If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-720=0
a = 2; b = 4; c = -720;
Δ = b2-4ac
Δ = 42-4·2·(-720)
Δ = 5776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5776}=76$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-76}{2*2}=\frac{-80}{4} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+76}{2*2}=\frac{72}{4} =18 $
| 3y+6=10-y | | 3x+12=52−2x= | | 8=x÷8 | | 20=s+225 | | x^2-5x^2+20+6(x^2+1+8x)=0 | | x-3/4x-0.18x=313.5 | | 4x^-9=55 | | 8y-5=-13 | | 4y-27=20 | | -(n^2)-39n+348=0 | | 3(3x-5)+5(x-3)=6 | | -4y-6=-5 | | 3x-5/5+x-3/3=6 | | 2.6666666667c-2=0.66666667c-12 | | (n^2)+39n-348=0 | | 9x^212x=0 | | 8/z-2=1 | | 20-x^2=x | | 20-x^×=x | | y/10+8=-5 | | x/10+3=-3 | | 2y-6=10y+10 | | y^2+15y=8y | | x/60+2400-x/120=30 | | ?x5=7.5 | | -7y+2=y+18 | | 8z-2=1 | | 3x+8/2x+8=11/8 | | (4n^2)-58n+190=0 | | 10-(x+2)=7x | | 3x²-11x=8 | | -7x+57=12x |